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We develop a numerical scheme for solving the time-dependent Kohn-Sham equation in semiconductor
heterostructures. Based on the efficient and accurate method recently proposed by Watanabe and Tsukada
�Phys. Rev. E 65, 036705 �2002��, an extension is made for treating effective-mass mismatch between different
semiconductor materials. A demonstrative calculation shows that the energy of the quantum-well state is
accurately conserved during the time-evolution calculation with the present method. Examples under the
existence of Hartree and exchange-correlation interactions are also shown as demonstrations of nonlinear
electron dynamics in quantum wells. The present method is particularly useful for analyzing nonlinear coherent
charge oscillations in semiconductor quantum wells, taking into account many-body effects.
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I. INTRODUCTION

The effective-mass Kohn-Sham �KS� equation has been
used for examining the quantum states of semiconductor het-
erostructures, e.g., accumulation or inversion layers �1�,
quantum wells �QWs� �2–6�, and superlattices �7�, taking
many-body effects of carriers into account. Thus, analogous
to the time-dependent KS �TDKS� equation commonly ap-
plied to the ab initio calculation of dynamical phenomena
and excited states in various materials �8�, we can expect the
effective-mass TDKS equation to be also effective for the
coherent charge dynamics and excited states in QWs. How-
ever, there are no reports to date on the study of quantum
states with the TDKS equation involving the effective-mass
mismatch, which causes significant effects in real semicon-
ductor heterostructures �9–11�.

Although straightforward implementation of the effective-
mass mismatch is itself possible based on the usual integra-
tion methods, such methods do not practically work for time-
evolution calculations over long time periods: simple
methods such as the Newton-Raphson method and the
Runge-Kutta method can perform calculations efficiently but
fail due to accumulation of numerical errors �12�, while ac-
curate methods such as the Clank-Nicholson method and the
alternating directional implicit method can derive accurate
results but require much computational time. Thus it is nec-
essary to develop a numerical method that can solve the
effective-mass TDKS accurately and efficiently even in the
existence of the effective-mass mismatch. In this paper, we
develop an efficient and stable scheme for solving the TDKS
equation with position-dependent effective-mass distribution
that is based upon the method proposed by Watanabe and

Tsukada �12�. The essence of the present method is to solve
the effective-mass TDKS equation on discretized space with
the help of exponential-product expansion. In order to treat
the spatial distribution of the electron effective mass, we
extend the space-splitting procedure �13–15�, in which a dis-
cretized Laplacian is decomposed into two block-diagonal
matrices, to treat the kinetic-energy operator involving a
position-dependent mass. Resultantly, the present method
can evaluate accurate results even for time evolutions over
very long time periods, following which the method is suit-
able for analyzing subband structures of small energy differ-
ences.

Usually, the semiconductor Bloch equation is widely ap-
plied for studying the temporal response of carriers in semi-
conductors �16�. However, foreknowledge of the energy
level structure and of transition matrix elements is required
to construct the Bloch equation, while the present method
automatically provides time-evolution results once the band
structure and initial state are defined. Thus, the present
method can be applied flexibly to systems of complex struc-
ture and is suitable for analyzing coherent charge dynamics
in semiconductor heterostructures with many-body interac-
tions, and above all, dynamical response to a slowly oscillat-
ing electric field, whose energy is sufficiently smaller than
that required for interband transition.

II. FORMULATION

In this section, we define a TDKS equation with position-
dependent effective mass and establish formulations for solv-
ing the equation. The effective-mass TDKS equation is ap-
plicable to general semiconductor heterostructures such as
quantum wires and dots, though for simplicity the formula-
tion is restricted to a QW system in this paper.*Electronic address: taro@crl.hpk.co.jp
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When electrons are confined in one-dimensional semicon-
ductor heterostructures �growth direction z�, time evolution
of the one-electron wave function �n is described with the
following TDKS equation in a mean-field approach:

i �
�

�t
�n�z,t� = H��;z,t��n�z,t� ,

H��;z,t� = K̂�z� + V̂��;z,t� . �1�

In the density functional theory �DFT� �17�, the electron den-
sity � is usually defined as the following:

��z,t� = �
n=1

N0

��n�z,t��2, �2�

where N0 is the total number of electrons in the system and n
is the index of each quantum state occupied with the elec-

tron. The effective potential �V̂�� ;z , t�� is given as a sum of
two parts: one is an internal mutual interaction component

V̂int�� ;z�, which is a functional of � and dependent on the
time implicitly via �, while the other is an external potential

component V̂ext�z , t�, which depends explicitly on the time
and position but not on �. Although the band-edge potential
is not a function of the time, it is treated as a component of
the external potential in our formulation. Explicit expres-
sions of the interaction terms will be given later.

A significant difference of the present effective-mass
TDKS equation �Eq. �1�� from ordinal TDKS equation is the
following “variable-mass” kinetic-energy operator �11�:

K̂�z� = −
�2

2

�

�z

1

m�z�
�

�z
, �3�

where m�z� denotes the position-dependent effective mass of

an electron. It should be stressed that K̂ is a Hermitian op-
erator.

In general, the formal solution of Eq. �1� is given as the
following with a time-ordering operator T:

�n�z,t� = T exp� 1

i�
�

0

t

dt�H��;t��	�n�z,0� . �4�

Watanabe’s method gives a practical procedure for calculat-
ing Eq. �4�. To clarify the modification included in this paper,
we briefly outline the formulation of Ref. �12� in the follow-
ing. Applying a Taylor development in exponential form and
the chain rule of the derivative, a short-time evolution of a
wave function is written as

�n�z,t + �t� = exp
�t

i�
��H��;z,t���

�

��

− �H��;z,t���* �

��* + i �
�

�tex
	��n�z,t� ,

�5�

where � /�tex is an explicit time-derivative operator. Here we
note that the following notation for a general functional
f��� , ��* , t� in Ref. �12� has been applied:

�H��
�f

��
� �

n=1

N0 � dz�H�n�z��
� f

��n�z�
. �6�

With the help of the exponential-operator expansion �18�,
Eq. �5� is written as

�n�z,t + �t�

= exp��t

2

�

�tex
	exp
�t

2

1

i�
��K̂��

�

��
− �K̂��* �

��*	�
� exp
�t

i�
��V̂��;z,t���

�

��
− �V̂��;z,t���* �

��*	�
� exp
�t

2

1

i�
��K̂��

�

��
− �K̂��* �

��*	�
� exp��t

2

�

�tex
	�n�z,t� + O��t2� . �7�

Among exponentials on the right-hand side �RHS� of Eq. �7�,
the exponential of V̂ can be treated in the same way as in
Ref. �12�. Thus, care is needed only for the kinetic-energy
operator.

In Ref. �12�, the exponential of Laplacian � was evalu-
ated using a Taylor series expansion, and higher-order terms
of the Taylor series were evaluated inductively from the first-
order relation, i.e.,


����
�

��
− ����* �

��*��n = ��n. �8�

Here, it is obvious that Eq. �8� is still correct even if � is

replaced with K̂, because K̂ does not depend on � nor �*.
From the higher-order relations �see the Appendix�, we ob-

tain the following equation for the exponential of K̂:

exp
�t

2

1

i�
��K̂��

�

��
− �K̂��* �

��*	��n�z,t�

= exp��t

2

K̂

i�
	�n�z,t� . �9�

Thus, the formula for short-time evolution becomes

�n�z,t + �t� = exp��t

2

K̂

i�
	

�exp��t

i�

V̂int���;z� + V̂ext�z,t +

�t

2
	��

� exp��t

2

K̂

i�
	�n�z,t� + O��t2� , �10�

where �� is given as

���z,t� = �
n=1

N0 �exp��t

2

K̂

i�
	�n�z,t��2

. �11�

The above equations indicate that Watanabe’s formulation is
valid also for the variable-mass kinetic-energy operator, i.e.,

K̂.
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In the present method, the kinetic-energy operator is fur-
ther decomposed into a sum of two parts, whose exponen-

tials can be easily calculated, i.e., K̂= K̂e+ K̂o �explicit ex-
pressions are given in Sec. III�. Applying the second-order

exponential-operator expansion, exponentials of K̂ in Eqs.
�10� and �11� are replaced with

exp��t

2

K̂

i�
	 � exp��t

4

K̂e

i�
	exp��t

2

K̂o

i�
	exp��t

4

K̂e

i�
	 .

�12�

It should be noted that the above expansion is correct up to
the order of O��t2� and thus the time-dependent nature of the
density in Ref. �12�, i.e.,

�� = ��t +
�t

2
	 + O��t2� , �13�

is also valid. Therefore, by substituting Eq. �12� into Eqs.
�10� and �11�, Eq. �10� is rewritten as

�n�z,t + �t� = S2��t;t��n�z,t� , �14�

where

S2��t;t� = exp��t

4

K̂e

i�
	exp��t

2

K̂o

i�
	exp��t

4

K̂e

i�
	

� exp��t

i�

V̂int���;z� + V̂ext�z,t +

�t

2
	��

� exp��t

4

K̂e

i�
	exp��t

2

K̂o

i�
	exp��t

4

K̂e

i�
	 .

�15�

S2��t ; t� gives a symmetric decomposition of the total time-
evolution operator that is accurate up to the second order of
�t. Formulas of higher-order accuracy are also derived using
S2��t ; t�, according to the property of exponential-product
expansion �18�.

III. NUMERICAL PROCEDURE

In this section, we describe numerical expressions for
practical calculations on the discretized space. Here, one-
dimensional space �z� is discretized into a finite mesh with
equal interval �z, and each point is labeled by an integer j
=1,2 , . . . ,N, where N is assumed to be an even integer. Ac-
cording to the discretization, a wave function is expressed as
a N-dimensional vector, whereas an operator generally be-
comes an N�N matrix that acts on the discretized wave
function.

To derive a matrix representation of the time-evolution
operator �Eq. �15��, exponentials of K̂e, K̂o, and V̂ must be
given on the discretized space. In the following, we define
the explicit expressions of K̂e and K̂o and calculate exponen-
tials of them. From Eq. �3�, K̂ is given as follows on the
discretized space:

K =
�2

2��z�2�
� 1

m1
− +

1

m1
+	 −

1

m1
+ 0 ¯ 0

−
1

m2
− � 1

m2
− +

1

m2
+	 −

1

m2
+ 0 �

0 −
1

m3
− � � 0

� 0 � � −
1

mN−1
+

0 ¯ 0 −
1

mN
− � 1

mN
− +

1

mN
+ 	
� , �16�

where each mi
± is defined as

mi
± = �mi + mi±1�/2, m1

− = m1, mN
+ = mN, �17�

with a discretized effective-mass distribution mi �19�. Equa-
tion �17� leads to mi

+=mi+1
− , indicating that the matrix defined

in Eq. �16� is a real symmetrical matrix, i.e., a matrix repre-
sentation of an Hermitian operator.

An exponential of K cannot, however, be expressed in a
suitable form for practical calculations. To obtain an expres-
sion convenient for numerical computations, the matrix K is
split into “even” and “odd” parts �K=Ke+Ko�, both of whose
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exponentials are expressed analytically �13–15�. Figure 1
shows a schematic diagram of the space-splitting procedure.
According to the space splitting, Ke and Ko become block-
diagonal matrices:

�Ke =
M

m1
+ �

M

m3
+ � ¯ �

M

mN−1
+ , �18�

�Ko =
1

m1
− �

M

m2
+ �

M

m4
+ � ¯ �

M

mN−2
+ �

1

mN
+ , �19�

respectively, with

M = � 1 − 1

− 1 1
	 �20�

and �=2��z�2 /�2. Considering the fact that exponentials of
block-diagonal matrices are also block-diagonal ones, we
can obtain the matrix representations of exp�	Ke / �i� �� and
exp�	Ko / �i� �� as

exp� 	Ke

i�
	 = exp�
M

m1
+ 	 � exp�
M

m3
+ 	 � ¯ � exp� 
M

mN−1
+ 	
�21�

and

exp� 	Ko

i�
	 = exp� 


m1
−	 � exp�
M

m2
+ 	 � exp�
M

m4
+ 	 � ¯

� exp� 
M

mN−2
+ 	 � exp� 


mN
+ 	 , �22�

where we introduce 
=−i	 / ���� for notational simplicity. It
is noted that boundary elements denote simple multiplica-
tions of scalar numbers in Eq. �22�. Explicit expressions of
other elements are calculated with the following formula:

exp�
M

mi
	 =

1

2
�1 + e2
/mi 1 − e2
/mi

1 − e2
/mi 1 + e2
/mi
	 . �23�

Since the coefficient 
 is an imaginary number, elements of
the above matrix are in practice written in terms of trigono-
metric functions. Consequently, a final expression of the
time-evolution matrix due to the kinetic-energy component is
obtained by substituting Eqs. �21�–�23� into Eq. �12�.

On the other hand, the discretized expression and expo-

nential are easily obtained for V̂, because the discretized ex-
pression of an interaction potential generally becomes a di-

agonal matrix. In the following section, the expression of V̂
is given after the problems are explicitly defined.

IV. EXAMPLES

In this section, we show calculation results for electrons
in AlGaAs QWs as demonstrations of the calculation method
developed in Secs. II and III. Preceding the examples, we
present definite formulations of the interaction terms for
electrons in QWs.

Regarding the z-directional motion of electrons in QWs
under a z-polarized oscillating electric field, all states ex-
pressed with the same wave function in the z direction can be
treated equivalently even if they are labeled with different
quantum numbers representing the momentum in the xy di-
rections. Moreover, the optical transitions between two sub-
band states with the same effective mass occur in the same
way, no matter where the transitions occur in the momentum
space perpendicular to the z direction �20�. Thus, when con-
sidering the case that all electrons occupy the same initial
state in the z direction, we can ignore the state index for the
xy motion and can set

��z,t� = N0���z,t��2, �24�

where we can regard N0 as a sheet electron density in the
above interpretation. From the above discussion, the many-
electron problem is effectively reduced to a one-electron
problem. In the present picture, occupation of higher states
due to an external electric field is induced not from the ther-
mal equilibrium but from the nonadiabatic quantum dynam-
ics, noting that electrons are in a pure state with respect to
the z direction, whereas they can be in mixed states accord-
ing to the xy directions.

Using the electron density � defined above, the total ef-
fective interaction potential in semiconductor QWs is gener-
ally described as the following functional:

FIG. 1. Schematic diagram of the space-splitting procedure ap-
plied to the kinetic-energy part of the Hamiltonian �K�
= �2�z2 /�2�K�. We note that absolute values of the four elements
become equal �see Eq. �17�� in each 2�2 block matrix surrounded
with a dashed square.
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V̂��;z,t� = −
e2

�
�

−�

z

dz���d�z�� − ��z����z − z��

+ VXC��;z� − eV0�z� − eE0�z − z0�sin t ,

�25�

where e is the charge of an electron, d�z� is the distribution
of ionized donors, and ��z� is a position-dependent effective
dielectric constant. In the RHS of Eq. �23�, the first two

terms compose the effective potential V̂int�� ;z�, which arises
from density-dependent mutual interactions and does not de-
pend explicitly on the time. The former is a Hartree interac-
tion potential, while the latter, VXC�� ;z�, is an exchange-
correlation �XC� potential whose expression is given later.
On the other hand, the third and fourth terms are contained in

the external potential V̂ext�z , t�; V0�z� is a fixed and time-
independent potential arising from the conduction-band pro-
file and fixed external electric field, while the last term is a
time-dependent potential due to an electric field of incident
light �electric field amplitude E0 and angular frequency �
with z0 as the origin of the electric potential.

According to the local density approximation in DFT
�17,21�, the XC potential is given as the following:

VXC��;z� = −
e4

32�2�2

m�z�
��z�2�9�

4
	1/3 2

�rs
*��;z�

� 
1 + 0.0545rs
*��;z�ln�1 +

11.4

rs
*��;z�	� ,

�26�

which is valid for a wide range of electron densities and is
often applied to semiconductor materials. In Eq. �26�, the
following quantities are introduced:

rs
*��;z� = � 3

4�N0��z�	
1/3 1

aB
* �z�

, aB
* �z� =

4��2��z�
e2m�z�

,

�27�

where the density parameter rs
* denotes the average distance

between electrons scaled by the effective Bohr radius aB
* in

the medium.
As mentioned earlier, the total effective interaction poten-

tial �Eq. �25�� becomes a real diagonal matrix on the dis-
cretized space, i.e.,

V��;t� =�
V1��;t� 0 ¯ 0

0 V2��;t� 0 �
� � 0

0 ¯ 0 VN��;t�
� , �28�

where

Vi��;t� = − eVi
H��� + Vi

XC��� − eV0i − eE0�i�z − z0�sin t ,

�29�

with Vi
H as the discretized Hartree potential. The exponential

of V becomes a diagonal matrix, whose elements are expo-
nentials of Vi. Further details of the interaction potentials and

material parameters in AlGaAs QW are described in Ref. �5�.
In the following, we show calculation examples concern-

ing the dynamical properties of electrons in QWs. All results
are obtained under the condition of �z=0.047 nm. The time
step is chosen as �t=0.0002 fs, which is sufficiently small to
suppress numerical errors. A damping potential of a small
imaginary value is set around the edges to suppress boundary
effects in the practical calculations.

A. Influence of effective-mass mismatch

As the first example, we demonstrate the influence of
effective-mass mismatch on the dynamics of an electron in
an asymmetric double QW �DQW�. Mutual interactions, i.e.,
Hartree and XC interactions, are omitted to focus our interest
only on the effect of effective-mass mismatch.

The time-independent procedure for calculating stationary
ground states of QWs in the presence of the effective-mass
mismatch is already established �5,6,19�. Thus, we calculate
the ground state taking into account the effective-mass mis-
match and start the time-evolution calculation from the sta-
tionary ground state. The time-evolution calculations are per-
formed in two ways: one is the calculation correctly
considering the effective-mass mismatch, and the other is
that with a uniform effective mass averaged over the region
under consideration. Although the latter treatment is appar-
ently incorrect, the comparison has the meaning of clarifying
numerical properties of the present method.

From a physical standpoint, energy and electron distribu-
tion must be unchanged during the time evolution in this
example. To observe the change of the electron distribution
quantitatively, we monitor the average displacement of elec-
trons ��z�=�dz �*�z�z��z�� as a benchmark of the distribu-
tion. Figures 2�a� and 2�b�, respectively, show the average
displacement and energy of an electron in an asymmetric
DQW as functions of the time. Here, the DQW consists
of two GaAs QWs, whose widths are 5.1 and 1.7 nm,
separated by a 0.8 nm Al0.44Ga0.56As barrier. Two 17 nm
Al0.44Ga0.56As barriers surround the DQW for electron con-
finement �shown as the inset in Fig. 2�a��. Here, electron
effective masses in GaAs and Al0.44Ga0.56As are 0.067me and
0.104me, respectively, where me denotes the electron mass in
vacuum. In Figs. 2�a� and 2�b�, we can observe that the elec-
tron distribution and energy are conserved in the calculation
involving the effective-mass mismatch. Relative numerical
errors for energy are less than 10−6and not observed in the
figure.

On the other hand, oscillating behaviors appear in the
time-evolution results with averaged effective mass. Calcu-
lations were also performed under various numerical condi-
tions: time steps of �t=0.0001, 0.0002, and 0.0005 fs with
space intervals of �z=0.047 and 0.071 nm. We observed the
same oscillations commonly in these conditions, which
means that the oscillation does not originate from a numeri-
cal artifact. If we start the averaged mass time-evolution cal-
culations from an stationary initial state obtained without
considering the effective-mass mismatch, such oscillations
will not be observed. However, this totally uniform-mass cal-
culation produces significant difference between calculation
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results and practically observed phenomena, especially in
material systems with larger effective-mass mismatch such
as the InAsSb/AlAsSb system. The present method enables
correct time-evolution calculations of subband states in semi-
conductor heterostructures, which calculations have not been
available so far.

B. Electron motion after instantaneous turnoff of constant
electric field

The second example is the electron oscillation in a uni-
formly doped single QW �SQW�. We start the time-evolution
calculation from a stationary initial state under a constant
external electric field. When the external electric field is
turned off at t=0, electrons begin to move to regain an even
charge balance, causing the oscillation. Although the instan-
taneous turnoff of the external electric field cannot be real-
ized in practice, this calculation is a good example of autono-
mous oscillation in QW.

Figure 3�a� shows the average displacement of electrons
in a SQW as a function of time, while Figs. 3�b� and 3�c�
illustrate the corresponding spatial distributions of electrons
at t=0 and 13 fs, respectively. The SQW consists of
an 8.5 nm GaAs layer placed between two 17 nm
Al0.44Ga0.56As barriers so that electrons are confined even
under strong external electric fields. Since the Hartree and
XC interactions are considered in this example, electron be-
havior changes depending on the total number of electrons.
For simulating the system containing many electrons in a
realistic way, we introduce uniformly distributed donors to
give a total sheet electron density of 4.0�1012/cm2. The

initial state is calculated under an external electric field of
75 kV/cm.

Figure 4 shows a Fourier spectrum of the temporal oscil-
lation in Fig. 3�a�, i.e., �z̃�� � = ��dt�z�t��e−it�. The main peak
at f�= /2��=31.7 THz is close to the energy difference
between the ground state �E0=43.6 meV from the bottom
of the conduction-band edge� and first excited state �E1

=173.5 meV� in the absence of nonlinear interactions. Thus
we consider that the electron oscillation arises mainly from a
quantum beat between the lowest two states. We cannot ex-
actly define the origins of other frequency peaks, but con-
sider the peaks to result from complicated nonlinear effects
of the mutual interactions and effective-mass mismatch.

C. Dynamical response of electrons to oscillating external
electric fields

One feature of the present method is that we can calculate
the nonlinear response of QW states to an external field in
the real-time domain. In this section, we provide an example
of the electron dynamics under an oscillating electric field
with nonlinear interactions. In this example, we consider the
same SQW structure that we introduced in the previous ex-
ample. As mentioned in Sec. IV B, energies of the ground
and first excited states are 43.6 and 173.5 meV from the

FIG. 2. �a� An average displacement �z� and �b� energy of the
electron ground state of GaAs/Al0.44Ga0.56As asymmetric DQW as
functions of the time. In both figures, solid lines denote the values
obtained with taking account of the effective-mass mismatch, while
dotted lines denote those obtained with an uniform mass averaged
over the position. The QW structure and initial electron distribution
are shown as the inset in �a�.

FIG. 3. �a� Temporal oscillation of averaged electron displace-
ment in uniformly doped GaAs/Al0.44Ga0.56As SQW and electron
distributions ����z��2� at t= �b� 0 and �c� 13 fs. Sheet electron den-
sity is 4.0�1012/cm2.

FIG. 4. Fourier spectrum of the temporal oscillation in Fig.
3�a�.
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bottom of the conduction-band edge, respectively, when the
nonlinear interactions are absent. Therefore, we can predict
that the single QW will absorb electric radiation whose fre-
quency nearly corresponds to the energy difference between
the lowest two states �here, 31.4 THz�, although a change of
the resonant frequency due to nonlinear interactions may ex-
ist.

Figures 5�a�, 5�b�, and 5�c� show Fourier spectra of the
electron oscillation under an oscillating external electric
field, whose frequency and amplitude are 31.4 THz and 1.0
�105 V/m, respectively. To study the effects of nonlinear
interactions, we compare calculation results with different
charge densities: N0= �a�0.0, �b� 2.0�1012, and �c� 4.0
�1012/cm2. As the figures illustrate, a subpeak appears just
above the frequency of the external electric field �Fig. 5�b��
and shifts to a higher frequency as the charge density in-
creases �Fig. 5�c��. This subpeak, we consider, corresponds
to the intersubband energy between the lowest two states that
suffers from the renormalization effect due to the Hartree and
XC interactions. The decrease of the subpeak at higher den-
sity is caused by frequency detuning of the external electric
field from the resonant frequency of intersubband energy.

In this paper, we showed the Fourier spectra of the aver-
age position �z�t�� for intuitive demonstration. However, a
complex dielectric response is easily obtained as �̃��=

−ez̃�� / Ẽ�� �here, the tilde denotes a value in the frequency
space� when choosing the origin of z�t� as the weighted av-
erage position of positive charges. Thus the present method
provides a useful tool for studying nonlinear effects in the
dielectric response of QWs.

The ab initio TDKS equation will give considerably exact
results also for QWs, although it requires a high computa-
tional cost because the QW structure must be given as an

alignment of atomic potentials in a first-principles calcula-
tion. The present method saves on computational cost by
applying the effective-mass approximation with complicated
nonlinear effects remaining involved. Therefore, the method
is the most comprehensive one so far that obeys the
effective-mass approximation and has a merit of enabling
simulations under realistic situations in a reasonable time. It
is also noted that intrasubband relaxation does nothing to the
present calculations because the z-directional shape of a
wave function is not changed by the intrasubband relaxation.
However, incoherent scattering processes, such as scattering
due to the roughness of a heterointerface, may cause change
to the wave function and damping of the oscillation. By com-
paring results of the present method with those of the semi-
conductor Bloch equations �16�, we can obtain valuable in-
formation that helps to reveal the coherent and incoherent
aspects of charge oscillation.

V. SUMMARY AND CONCLUSION

In this paper, we developed an accurate, efficient, and
simple method for solving the TDKS equation in semicon-
ductor heterostructures. Applying the space-splitting treat-
ment to the variable-mass kinetic-energy operator in the
Hamiltonian, we realized a numerical scheme that can per-
form time-evolution calculations while involving the effect
of effective-mass mismatch at the heterosurface. Interaction-
free calculations in an asymmetric DQW showed that the
present method involving the effective-mass mismatch in
practice conserved the energy and electron distribution with
high accuracy. Electron oscillation and nonlinear response of
uniformly doped SQWs were also demonstrated. Although
the present method cannot treat interband transitions, it does
provide a simple and comprehensive picture of intersubband
transitions in semiconductor heterostructures under the
effective-mass approximation. We expect that the method
will be particularly useful for analyzing nonlinear responses
of quantum wells under terahertz radiation �22� from the as-
pect of coherent charge dynamics.
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APPENDIX: EXPONENTIAL OF KINETIC-ENERGY
OPERATOR

In this appendix, we show a direct proof of Eq. �8�, al-

though it is easily understood from the Hermiticity of K̂.
As mentioned in the text, it is trivial to show that

��K̂��
�

��
− �K̂��* �

��*	k

�n = K̂k�n �A1�

for k=1 because K̂ does not depend on � nor �*. For the
second-order relation �k=2�,

FIG. 5. Fourier spectra of electron oscillation in
GaAs/Al0.44Ga0.56As SQW under an oscillating external electric
field �f =31.4 THz, E0=1.0�105 V/m�. The spectra are obtained
similarly as Fig. 4 with charge densities of �a� N0=0.0/cm2, �b�
2.0�1012/cm2, and �c� 4.0�1012/cm2. Here, N0=0.0/cm2 denotes
the situation without nonlinear interactions.

NUMERICAL METHOD FOR COHERENT ELECTRON¼ PHYSICAL REVIEW E 73, 066702 �2006�

066702-7



��K̂��
�

��
− �K̂��* �

��*	2

�n = ��K̂��
�

��
− �K̂��* �

��*	K̂�n

= �K̂��
��K̂�n�

��
= �K̂��

K̂��n

��

�A2�

is obtained, where the linearity of K̂ is considered in the last
deformation. To further evaluate Eq. �A2�, we consider the
following integral:

�
a

b

dz��K̂�z���m�z���K̂�z����n

= −
�2

2
�

a

b

dz��K̂�z���m�z���
�

�z�

1

m�z��
�

�z�
��n,

�A3�

where ��n denotes a variation of the wave function �n�z�. In
this appendix, the dependence of �n�z� on the time variable
is dropped for notational simplicity. Applying the partial in-
tegral formula to the RHS of Eq. �A3� and ignoring surface
terms, we obtain

�
a

b

dz��K̂�z���m�z���
�

�z�

1

m�z��
�

�z�
��n

= ��K̂�z���m�z��� 1

m�z��
�

�z�
��n�

a

b

− �
a

b

dz�� �

�z�
K̂�z���m�z��	 1

m�z��
�

�z�
��n

= − �
a

b

dz�� 1

m�z��
�

�z�
K̂�z���m�z��	 �

�z�
��n.

Repeating the similar operation again, the above equation is
further modified as

− �� �

�z�

1

m�z��
�

�z�
K̂�z���m�z��	��n�

a

b

+ �
a

b

dz�� �

�z�

1

m�z��
�

�z�
K̂�z���m�z��	��n

= −
2

�2�
a

b

dz��K̂2�z���m�z�����n. �A4�

From Eqs. �A3� and �A4�, the following formula is derived:

�
a

b

dz��K̂�z���m�z���K̂�z����n = �
a

b

dz��K̂2�z���m�z�����n.

�A5�

Here, with the help of Eq. �6� in the text and using Eq. �A5�,
we obtain the following relation:

�K̂��
K̂��n

��
= �

m=1

N0 �
a

b

dz��K̂�z���m�z���K̂�z��
��n

��m�z��

= �
m=1

N0 �
a

b

dz��K̂2�z���m�z���
��n

��m�z��

= K̂2�n. �A6�

Thus, substituting Eq. �A6� into Eq. �A2�, we can prove Eq.
�A1� for k=2. By repeating the above derivation, Eq. �A1� is
shown to be correct for general k. Finally, the following for-
mula is obtained:

exp
���K̂��
�

��
− �K̂��* �

��*	��n

= �
k=0

�
�k

k!
��K̂��

�

��
− �K̂��* �

��*	�n

= �
k=0

�
�k

k!
K̂k�n

= exp��K̂��n. �A7�
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